Crystal Structure of Cobaltous Chloroaluminate, $\mathbf{C o}\left(\mathbf{A l C l}_{\mathbf{4}}\right)_{\mathbf{2}}$

By James A. Ibers*
Shell Development Company, Emeryville, California, U.S.A.

(Received 22 December 1961)
The bright blue crystals of empirical composition $\mathrm{CoCl}_{2} .2 \mathrm{AlCl}_{3}$ formed when CoCl_{2} and AlCl_{3} are melted and then cooled together in a sealed system are shown, on the basis of a complete structure determination, to be cobaltous chloroaluminate, $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$. There are four molecules of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ in a monoclinic cell of dimensions

$$
a=12.81, b=7.75, c=11.50 \AA ; \beta=92.2^{\circ},
$$

space group $C_{2 h}^{6}-I 2 / c$. The structure is most usefully described in terms of infinite chains of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ parallel to the c axis. The cobalt atom is octahedrally coordinated, a surprising result in view of the color of the compound. Each CoCl_{6} octahedron shares edges with two AlCl_{4} tetrahedra and vertices with two others. Each AlCl_{4} tetrahedron shares one edge with one CoCl_{6} octahedron and a vertex with the next CoCl_{6} octahedron along the chain. The AlCl_{4} group is nearly regular. The CoCl_{6} group is severely distorted, although the six $\mathrm{Co}-\mathrm{Cl}$ distances are equal, within the limits of error of this study.

Introduction

When AlCl_{3} and CoCl_{2} are melted together at about $225^{\circ} \mathrm{C}$. in a sealed tube a blue solution is formed; at the same time, bright blue crystals can be condensed at the cool end of the tube. These crystals have the composition $\mathrm{Co}: \mathrm{Al}: \mathrm{Cl}=\mathrm{I}: 2: 8\left(\mathrm{CoCl}_{2} .2 \mathrm{AlCl}_{3}\right)$, as established from neutron activation analyses. The paucity of data on the structures of complex halides and current interest in the coordination of transition metal ions prompted the structure determination reported here. On the basis of this study $\mathrm{CoCl}_{2} .2 \mathrm{AlCl}_{3}$ is in fact cobaltous chloroaluminate, $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$, and will be referred to as such in this paper.

Unit cell and space group

Crystals of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$, as prepared from the melt, are bright blue in color and exhibit a needle-like habit. The crystals appear to be hexagonal in cross section. There is perfect cleavage along the needle axis. The crystals decompose rapidly in air, but are easily handled under mineral oil that has been pre-treated with AlCl_{3} (Kumamoto, Ibers \& Snyder, 1961).

A broken needle was selected for the X-ray photography. This crystal had dimensions of the order of $0.2 \times 0.2 \times 0.5 \mathrm{~mm}$. It was mounted directly in an oil-filled 0.2 mm . glass capillary tube, and the tube was sealed with Spectrovac wax. A series of Weissenberg and precession photographs was taken of the crystal mounted about its needle axis. From calibrated precession photographs we find the crystal to be monoclinic with

[^0]\[

$$
\begin{gathered}
a=12 \cdot 81 \pm 0 \cdot 02, b=7 \cdot 75 \pm 0.01, c=11 \cdot 50 \pm 0.02 \AA ; \\
\beta=92 \cdot 2 \pm 0 \cdot 1^{\circ} . \dagger
\end{gathered}
$$
\]

The needle axis is [001]. The following systematic extinctions were noted: $h 0 l$ absent if either h or l is odd; $h k 0$ absent if $h+k$ odd; $0 k l$ absent if $k+l$ odd; $h h l$ and $3 h, h, l$ absent if l odd. These systematic extinctions are consistent only with the space groups $C_{s}^{4}-I c$ or $C_{2 h}^{6}-I 2 / c$ (unique axis b). Both transformations from body-centered to possible C end-centered cells, namely

$$
\tilde{a}^{\prime}=\bar{a} \pm \bar{c}, \bar{b}^{\prime}=\bar{b}, \bar{c}^{\prime}=\bar{c}
$$

lead to a monoclinic angle near 130°. Such an angle is inconvenient if one wishes to produce directly as a computer print-out a semi-plottable form of a Fourier map. Moreover, the description adopted here of the cell as body centered, as we shall see, is convenient for it enables one to visualize readily the relation between this cell and a simpler hexagonal cell in which c is the unique axis and a and b the orthohexagonal axes $(a \approx \sqrt{ }(3) b)$. The realization that the monoclinic cell is a distortion of a simpler hexagonal cell contributed to the solution of the structure. Hence the advantages of maintaining the description of the monoclinic cell as body-centered completely outweigh any advantage that might be gained by redefining the cell to conform to the conventions of International Tables for X-ray Crystallography (1952).

Densities for $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ of $2 \cdot 20$ to $2 \cdot 22 \mathrm{~g} . \mathrm{cm} .^{-3}$ were
\dagger Recently Corbett, Burkhard \& Druding (1961) reported the preparation of a compound which they surmised to be $\mathrm{Cd}\left(\mathrm{AlCl}_{4}\right)_{2}$. On the basis of their X-ray powder data and the unit cell data above, it is unlikely that $\operatorname{Cd}\left(\mathrm{AlCl}_{4}\right)_{2}$ and $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ are isostructural.
obtained by the flotation method, when pre-dried $\mathrm{CCl}_{4}-\mathrm{CH}_{2} \mathrm{Br}_{2}$ mixtures were used as flotation liquids. The density is not too reliable because of slow reaction of the crystals with the flotation liquid. (After about 10 minutes in such mixtures the crystals turn green.) Nevertheless, the density is satisfactorily close to that of $2.31 \mathrm{~g} . \mathrm{cm} .^{-3}$ predicted for four molecules of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ in the unit cell.

Collection of intensities and their reduction to structure amplitudes

Intensity data were collected from the crystal with the use of Mo $K \alpha$ radiation filtered through Zr foil. The use of molybdenum radiation obviated the need for an absorption correction. (The linear absorption coefficient μ of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ for Mo $K \alpha$ is about $35 \mathrm{~cm} .^{-1}$ and hence μR, where R is the 'radius' of the crystal, is about $0 \cdot 4$.) Weissenberg data, obtained by the equi-inclination method, were collected from the $h k 0$ to $h k 6$ layers. Precession data were collected from the $h k 0,0 k l$, $h h l$, and $3 h, h, l$ layers. Multiple films were used in the Weissenberg photography; multiple exposures in the precession photography.

Intensities were estimated by visual comparison with an intensity strip. This strip was made from timed exposures of the 220 reflection. The strip had a scale that ranged from a relative value of 1 , this spot being barely visible, to 64. Ilford Industrial X-ray film type G was used for the photography.

Intensities were reduced to relative values of the structure amplitudes after account was taken of the appropriate Lorentz-polarization factors. The precession photographs provided sufficient data so that all structure amplitudes could be brought to a common scale, and only a single scale factor was carried in the ensuing calculations.

One advantage of combined Weissenberg-precession photography is that inter-layer correlations of intensities can be obtained without remounting the crystal. On the other hand not all data within the sphere of reflection can be obtained in this way. Because of this and because upper level data were not collected past $l=6$, the data obtained here are highly nonspherical. Nevertheless, of the approximately 1850 independent reflections within the sphere $\sin \theta_{\text {Mo }} \leq 0.50$, we had access to about 1100 . Of these only about 400 were sufficiently intense to be estimated.

Solution of the crystal structure

There were several important clues that led to the finding of a suitable trial structure. The volume per chlorine atom in $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ is about $35 \AA^{3}$, slightly greater than in $\mathrm{FeCl}_{3}\left(33 \AA^{3}\right), \mathrm{CoCl}_{2}\left(31 \AA^{3}\right)$, or AlCl_{3} ($30 \AA^{3}$), all close-packed structures. Hence the chlorine atoms in $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ must be nearly close-packed. There is perfect cleavage along the c axis, and thus the cobalt and aluminum atoms probably fill holes in
the close-packed chlorine lattice in such a way as to form chains parallel to c. The $h k 0$ layer shows pseudotrigonal symmetry: the [0k0] and [3h,h,0] zones are approximately 60° from one another, and reflections at the same Bragg angle on these zones show similar intensities. Thus 020 resembles 310 , 040 resembles 620 (both very intense), etc. A similar relation holds between the [$h 00]$ and [$h h 0$] zones. Hence in projection onto the $a b$ plane the atoms are probably approximately hexagonally packed. There must be a high density of atoms in the 040 and 620 planes to account for the high intensities of these reflections. Finally the intensities of reflections with l odd are generally much lower than those with l even. The cobalt atom is probably not contributing to reflections with l odd.

With these clues in mind various scale models (Cl radius, $\mathrm{l} .80 \AA$) were constructed. The only one that satisfied all the available facts consisted of strings of cobalt atoms tied together by AlCl_{4} tetrahedra in such a way that the cobalt atoms were in octahedral holes. The cobalt octahedra shared edges with two aluminum tetrahedra and vertices with two others. The AlCl_{4} group was taken to be a perfect tetrahedron $3.5 \AA$ on an edge, with the aluminum at the center. Then upon making the structure as symmetric as possible a set of trial parameters was obtained. This model, incidentally, had the cobalt atom at the origin and was consistent with the space group $I 2 / c$.

We went directly from this trial structure to a least-squares refinement. Since the least-squares technique was used extensively in this study we diverge here to indicate the form in which it was applied. Structure factors were computed with the use of individual, isotropic thermal parameters (initially guessed). The sources of the atomic scattering factors used are Al^{+3}, Freeman (1959); Cl^{-}, Boys (1958) (identical with Dawson (1960); Co^{+2}, Watson \& Freeman (1961). No corrections for anomalous dispersion were made. In the least-squares calculations the function

$$
\sum_{\text {eflections }}\left[\left|F_{o}\right|-s \mid F_{c}!\right]^{2}
$$

was minimized, where s is the single scale factor which brings observed and calculated structure amplitudes to a common scale. Unit weights were used, except as indicated below. The goodness of fit between observed and calculated structure amplitudes was judged both from the conventional R factor, and from the error of fit function

$$
\text { (error of fit) }{ }^{2}=(m-n)^{-1} \Sigma\left[\left|F_{o}\right|-s\left|F_{c}\right|\right]^{2}
$$

where m is the number of observations and n is the number of parameters adjusted (23 in the present case). Calculations were initially carried out on an IBM 704 and later on an IBM 7090.

With some optimism a least-squares refinement of the $l=0$ and $l=2$ data, based on the trial structure,

Table 1. Final least-squares parameters for $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$

Atom	Position*	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	B	$\sigma(B)$
Co	$4{ }^{4}$	0	-	0.0017	0.0012	,		$2 \cdot 15$	$0 \cdot 13$
Al	$8 f$	0.0877	0.0008	0.2516	0.0018	0.5538	0.0010	$2 \cdot 80$	$0 \cdot 21$
Cl I	$8 f$	$0 \cdot 1588$	$0 \cdot 0007$	0.4843	0.0019	$0 \cdot 6084$	0.0009	$3 \cdot 66$	0.21
Cl II	$8 f$	$0 \cdot 1559$	$0 \cdot 0006$	0.0192	0.0016	$0 \cdot 6334$	0.0007	$2 \cdot 69$	0.18
Cl III	$8 f$	0.0851	$0 \cdot 0007$	0.2339	0.0015	$0 \cdot 3670$	0.0008	2.56	$0 \cdot 19$
Cl 1 V	$8 f$	-0.0701	0.0007	0.2239	0.0014	$0 \cdot 6167$	$0 \cdot 0009$	$2 \cdot 88$	$0 \cdot 21$
* These equivalent positions for $I 2 / c$ are : $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$ (4e) $\pm\left(0, y, \frac{\}}{\}}\right)$ (8f) $\pm(x, y, z) ; \pm\left(\bar{x}, y, \frac{1}{2}-z\right)$									

was first attempted. This refinement diverged: by the end of the second cycle the thermal parameter of the aluminum atom had increased from the initial guess of $3 \AA^{2}$ to $12.7 \AA^{2}$. It seemed likely that the aluminum position in the trial structure was incorrect; the high thermal parameter corresponds to an attempt to smear out the aluminum contributions to the structure amplitudes. However, the R factor of 0.39 for the structure before the refinement diverged was sufficiently low to foster faith in the rest of the trial structure.

The signs of the structure factors from the trial structure were assigned to the structure amplitudes for the layers $l=0,2,4$, and 6 , and a three-dimensional Fourier series was computed. The Fourier map enabled us to confirm our suspicion that the aluminum atom was in an incorrect position and to derive the correct aluminum position. An improved scale factor and improved thermal and positional parameters for the other atoms were also obtained from this Fourier map.

A second least-squares refinement of the $l=0,2,4$, and 6 Weissenberg data and of the precession data, based on this new trial structure, was attempted. In this refinement zero weight was given to those close-in strong reflections believed to be weakened by extinction ($200,620,040,222,004,22 \overline{2}$, and $20 \overline{4}$). This refinement converged rapidly to parameters which gave an R factor of $0 \cdot 13$ and an error of fit of $4 \cdot 2$. Although these are satisfactory values for this type of structure, there were some serious difficulties. First, certain features of the structure were unreasonable; second, while the overall R factor was $0 \cdot 13$, the R factor for the $15 l$-odd reflections (from the 0 kl precession data) was 0.58 . Since all of the calculations up to this point were based almost entirely on the relatively intense data for l even, it is only necessary that the derived structure, if correct, be so to within $\pm \frac{1}{4}$ in the z parameters. Seventeen close-in l-odd reflections were therefore selected and individual contributions of each atom to the structure factors of these reflections were calculated. A combination of $\pm \frac{1}{4}$ was sought which, when added to the z parameters, would substantially improve the agreement. Only one such combination was found. A final leastsquares refinement of all of the data, including all of the available structure amplitudes for l odd, was based on this new model. This refinement converged rapidly to the parameters given in Table 1. The
final error of fit is 3.45 ; this does not approach unity, for absolute weights were not employed. The final R factors (observed reflections only) are overall, $0.11 ; l$-even, $0 \cdot 10 ; l$-odd, $0 \cdot 13$. The difference between the R factors for l-odd and l-even reflections is not significant, for the l-odd reflections are generally weaker and thus more difficult to estimate accurately, and also the limited l-odd data on the precession photographs make accurate scaling difficult. Table 2 lists the final values of F_{c} and the values of $\left|F_{o}\right|$. Not listed are the values of F_{c} for the 700 or so unobserved reflections. However, only about one dozen of these exceed the estimated maximum allowable values of $\left|F_{o}\right|$, and none by more than 30%. All in all the agreement is excellent; the assumption that the space group is $I 2 / c$, rather than $I c$, thus seems justified.

It is interesting that relative to the cobalt at the origin, three of the chlorine atoms were initially in correct positions and the fourth was correct to within $\frac{1}{2}$ in its z parameter. This led to the placement of the aluminum atom in the wrong tetrahedral hole. The correct structure might have been found sooner had the data for the l-odd reflections been included in the calculation of the Fourier map. Yet the omission of these data from the initial least-squares refinements was fortunate, for convergence to a structure correct to within $\pm \frac{1}{4}$ in the z parameters was thus assured.

Description of the structure

Data on the structures of complex halides are limited, and no structures of comparable stoichiometry have been described in the literature. The structure of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ may be described in terms of the placement of cobalt and aluminum atoms in octahedral and tetrahedral holes, respectively, of a nearly close-packed chlorine lattice. The chlorine atoms lie approximately in planes parallel to the $a b$ plane of the unit cell. In each unit cell there are four such chlorine planes, which we label A, B, A^{\prime} and B^{\prime} (Fig. 1), whose fractional heights along c (z parameters) are approximately $0.12,0.37,0.63$, and 0.88 . The chlorine atoms within a given plane are approximately hexagonally arranged. The A^{\prime} plane superimposes almost exactly onto the A plane, as does the B^{\prime} plane onto the B plane. This is not required by the symmetry of the space group.

Table 2. Observed and calculated structure factors for $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$

处	

The cobalt atoms are approximately hexagonally arranged in planes parallel to the chlorine planes at heights of $\frac{1}{4}$ and $\frac{3}{4}$. The cobalt atoms occupy onequarter of the octahedral holes.
Aluminum atoms connect chlorine planes B and A^{\prime} and chlorine planes B^{\prime} and $A+1$. The aluminum atoms do not lie in planes, and those between B and A^{\prime} cannot be superimposed onto those between B^{\prime} and $A+1$. Rather the aluminum atoms occupy particular tetrahedral holes and are not hexagonally arranged.

Fig. 1. Part of an infinite $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ chain parallel to c. The view is down along [110]. Aluminum atoms at the centers of the solid tetrahedra are not shown. A CoCl_{6} octahedron is shown in dashed lines.

An alternate, more useful description of the structure in terms of infinite chains of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ parallel to the c axis is possible. Each AlCl_{4} tetrahedron shares one edge with a CoCl_{6} octahedron and a vertex with the next cobalt octahedron along the chain. Each CoCl_{6} octahedron shares edges with two AlCl_{4} tetrahedra and vertices with two others. This arrangement is shown in Fig. 1. It differs from our initial guess mainly in the arrangement relative to one another of the four AlCl_{4} tetrahedra associated with each cobalt. The chains of $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ are separate from one another; only van der Waals chlorine-chlorine contacts exist between them. This is the justification for deciding that $\mathrm{CoCl}_{2} .2 \mathrm{AlCl}_{3}$ is cobaltous chloroaluminate.

In Table 3 the principal interatomic distances and their standard deviations are listed. All Al-Cl distances are significantly shorter than $2 \cdot 3 \AA$, the sum of the tetrahedral radii of Al and Cl (Pauling, 1960). The $\mathrm{Al}-\mathrm{Cl} \mathrm{I}$ distance is significantly shorter than the other three; this is reasonable for Cl I is the only chlorine

Table 3. Interatomic distances in $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$
AlCl_{4} group

(Al, O)	$(\mathrm{I}, 0)^{*}$	$2 \cdot 105 \pm 0 \cdot 019 \AA$
	$(\mathrm{III}, 0)$	$2 \cdot 151 \pm 0 \cdot 016$
	(IV,0)	$2 \cdot 183 \pm 0 \cdot 014$
	$(\mathrm{II}, 0)$	$2 \cdot 188 \pm 0 \cdot 018$
	(II, 0) (IV,0)	$3 \cdot 300 \pm 0 \cdot 013$
	(I,0) (III,0)	$3 \cdot 488 \pm 0.016$
	(III, 0) (IV,0)	$3 \cdot 555 \pm 0 \cdot 014$
	(I, 0) (IV,0)	$3 \cdot 564 \pm 0 \cdot 016$
	(II, 0) (III, 0)	$3 \cdot 573 \pm 0 \cdot 015$
	(I,0) (II, 0)	$3 \cdot 616 \pm 0 \cdot 015$

CoCl_{6} group

$(\mathrm{Co}, 0)(\mathrm{II}, 4)$	$=(\mathrm{Co}, 0)(\mathrm{II}, 5)$	$2 \cdot 453 \pm 0.009 \AA$
(Co, 0) (IV, 4)	$=(\mathrm{Co}, 0)(\mathrm{IV}, 5)$	$2 \cdot 472 \pm 0 \cdot 012$
(Co, 0) (III, 0)	$=(\mathrm{Co}, 0)(\mathrm{III}, 2)$	$2 \cdot 475 \pm 0 \cdot 013$
(II, 4) (IV, 4)	$=(\mathrm{II}, 5)(\mathrm{IV}, 5)$	$3 \cdot 300 \pm 0.013$
(III, 0) (III, 2)		$3 \cdot 399 \pm 0 \cdot 020$
(II, 4) (III, 2)	$=(\mathrm{II}, 5)(\mathrm{III}, 0)$	$3 \cdot 474 \pm 0.014$
(IV, 4) (IV, 5)		$3 \cdot 494 \pm 0.021$
(II, 4) (IV,5)	$=(\mathrm{II}, 5)(\mathrm{IV}, 4)$	$3 \cdot 497 \pm 0 \cdot 014$
(IV, 4) (III, 0)	$=(\mathrm{IV}, 5)($ III, 2)	$3 \cdot 559 \pm 0 \cdot 014$
(II, 4) (III, 0)	$=(\mathrm{II}, 5)($ III, 2)	$3 \cdot 659 \pm 0.014$

Non-bonded $\mathrm{Cl}-\mathrm{Cl}$ distances within a chain ($<4 \AA$)

$(\mathrm{IV}, 0)(\mathrm{II}, 4)$		
$(\mathrm{IV}, 6)(\mathrm{I}, 0)$	$=(\mathrm{II}, 0)(\mathrm{IV}, 4)$	$3 \cdot 576 \pm 0 \cdot 015 \AA$
		$3 \cdot 954 \pm 0 \cdot 016$
	$\mathrm{Al} \cdots$ Co distances	
$(\mathrm{Co}, 0)(\mathrm{Al}, 0)$		$4 \cdot 113 \pm 0.014 \AA$
$(\mathrm{Co}, 0)(\mathrm{Al}, 4)$		$3 \cdot 225 \pm 0.014$

All interchain $\mathrm{Cl} \cdot \mathrm{Cl}$ distances are $3.73 \AA$ or greater.

* The number following the designation of the atom signifies the following symmetry transformation of the coordinates given in Table 1.

$$
\begin{array}{llll}
0 & x, y, z & 4 & x, y, 1+z \\
1 & \bar{x}, \bar{y}, \bar{z} & 5 & x, \bar{y}, z-1 / 2 \\
2 & \bar{x}, y, 1 / 2-z & 6 & \bar{x}, y, 3 / 2-z
\end{array}
$$

atom not bonded to cobalt. Chlorine I undergoes significantly more thermal motion (Table 1), as would also be expected. The $\mathrm{Cl}-\mathrm{Cl}$ distances of the tetrahedron are for the most part shorter than $3.60 \AA$, twice the ionic radius of chlorine. The II-IV distance of $3 \cdot 30 \AA$ is very short indeed. The II-IV edge is the common one between the AlCl_{4} tetrahedron and the CoCl_{6} octahedron, and so such a contraction is perhaps not too unexpected. The only other chloroaluminate reported in the structure literature is NaAlCl_{4}, which Baenziger (1951) studied. He found Al-Cl distances of from $2 \cdot 11$ to $2 \cdot 16 \AA$, and $\mathrm{Cl}-\mathrm{Cl}$ distances of from $3 \cdot 39$ to $3 \cdot 54 \AA$. (Baenziger does not give limits of error for these distances, but they are probably about 0.03 to $0.05 \AA$.) Thus the dimensions of the AlCl_{4} tetrahedron in $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ and in NaAlCl_{4} are essentially the same, although the AlCl_{4} group is packed very differently in the two structures.

The $\mathrm{Co}-\mathrm{Cl}$ distances in the CoCl_{6} octahedron are not significantly different from one another, but the octahedron is severely distorted. Such a distortion explains the appearance of an electron spin resonance
spectrum at room temperature (Swalen, 1960), for such a spectrum would not be observed if the octahedron were perfect. The $\mathrm{Co}-\mathrm{Cl}$ distance of $2 \cdot 47 \AA$ is somewhat longer than would be expected on the basis of the sum $(2 \cdot 3 \AA)$ of the cobalt octahedral radius and the chlorine radius (Pauling, 1960), but agrees well with the value of $2 \cdot 49 \AA$ found by Dunitz (1957) in α-cobalt dipyridine dichloride. The bonding along the $\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ chains is very compact; the inter-chain bonding is loose, the shortest $\mathrm{Cl}-\mathrm{Cl}$ interchain contacts being $3.73 \AA$.
$\mathrm{Co}\left(\mathrm{AlCl}_{4}\right)_{2}$ is another of the few exceptions to the rule that octahedral complexes of divalent cobalt are red or pink and tetrahedral complexes blue. However, the symmetry of the structure is sufficiently low so that the degeneracies of the excited energy levels of Co^{+2} are removed, and large shifts in the characteristic absorption bands can occur.

I am indebted to D. O. Schissler of these laboratories for the preparation of the crystals. I am also indebted
to W. R. Busing and H. A. Levy for their leastsquares and error programs and to A. Zalkin for his Fourier program for the IBM 704.

References

Baenziger, N. C. (1951). Acta Cryst. 4, 216.
Boys, S. F. (1958). Unpublished work.
Corbett, J. D., Burkhard, W. J. \& Druding, L. F. (1961). J. Amer. Chem. Soc. 83, 76.

Dawson, B. (1960). Acta Cryst. 13, 403.
Dunitz, J. D. (1957). Acta Cryst. 10, 307.
Freeman, A. J. (1959). Acta Cryst. 12, 261.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
Kumamoto, J., Ibers, J. A. \& Snyder, R. G. (1961). Rev. Sci. Instrum. 32, 362.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd Edition. Ithaca: Cornell University Press.
Swalen, J. D. (1960). Unpublished work.
Watson, R. E. \& Freeman, A. J. (1961). Acta Cryst. 14, 27.

Refinement of the Structure of BaTiO_{3} and other Ferroelectrics

By Helen D. Megaw
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 31 October 1961 and in revised form 15 January 1962)

Abstract

The structure of BaTiO_{3} as determined by Evans (1961) is reliable, provided it is recognized that the thermal parameters, which are all rather small, are not very accurately known. The large standard deviations obtained by use of a least-squares program (Evans, 1961; Geller, 1961) are inconsistent with the terms in which the model is defined; this internal contradiction means that the application of the program to this type of structure is suspect, and cannot be used to discredit the empirical agreement between three independent determinations. The evidence suggests that position parameters may be found with fair confidence, by suitable methods of refinement, even when thermal parameters are doubtful.

Refinement of the structure of BaTiO_{3} and other ferroelectrics

It would be a great pity if all the outstandingly careful work of Evans (1961) on the structure of BaTiO_{3} led only to the conclusion that 'the structure is essentially indeterminate'. The evidence quoted by Evans himself is against such a conclusion, though it is true that a satisfactory statistical method of estimating the errors in the parameters has not yet been found.
The parameters have been determined in three independent investigations, by Evans (1961), Frazer, Danner \& Pepinsky (1955) and Känzig (1951). Evans refined the structure in terms of four different noncubic models. The results of all six models are recorded in Evans's Table 2. The mean values and mean deviations of the parameters are shown here in Table 1;
the extreme range of the thermal parameters is also shown. It can be seen that there is very reasonable agreement in the position parameters (that for O_{2} being least accurate) and that there is order-ofmagnitude agreement in the thermal parameters, none of which are abnormally large. It is well known that thermal parameters are particularly sensitive to any disregarded or inadequately corrected systematic errors, such as effects of extinction, absorption, or incorrect scaling; hence it is not really surprising (though it may be disappointing) that agreement between them is not closer. The empirical agreement between position parameters obtained in quite independent investigations, and by refinement of different models, shows that these are not very sensitive to variations in the thermal parameters-a fact also noted by Danner, Frazer \& Pepinsky (1960), and

[^0]: * Present address: Department of Chemistry, Brookhaven National Laboratory, Upton, L.I., New York.

